If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+10x-2=0
a = 20; b = 10; c = -2;
Δ = b2-4ac
Δ = 102-4·20·(-2)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{65}}{2*20}=\frac{-10-2\sqrt{65}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{65}}{2*20}=\frac{-10+2\sqrt{65}}{40} $
| (x*x)-17x=80 | | 41-y=32 | | -9y+18=9(y-6) | | -3(w+1)=5w-3+2(3w+8) | | -5(2w-2)+8w=2(w+4) | | -5(2w-2)8w=2(w+4) | | 7(w-5)-3=-4(-5w+6)-9w | | 4(y+1)=6y-16 | | 3x-36=-6(x-6) | | 3x+4+54=90 | | x-(x*0.0205)=1000 | | (4d5-15d3-5d2+15d+9)y=0 | | 92-m=32.5 | | m+18.6=25.19 | | 3^((2)(x+1)-8*3^(x+1)=9 | | 7x+8=8x+10 | | 4x+6+2x-6=30 | | 15+d=40 | | 15x=-0.15 | | 1/5g=3/5 | | 6x-(4*3)=24 | | 2x+(3*3)=17 | | 2x+(3x3)=17 | | 11s-7=9s+10 | | 9r+6=5r+18 | | 10q-5=7q+4 | | 8p+3=6p+11 | | 7m-2=5m+8 | | 4b+7=3b+14 | | 11s-6=50 | | y+6/5=2.3 | | 5x=5=40-2x |